The synthesis of 2,3-dideoxyhex-2-enono-1,5-lactones

JÓZEF MIECZKOWSKI, JANUSZ JURCZAK, MAREK CHMIELEWSKI, AND ALEKSANDER ZAMOJSKI*

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland)

(Received July 12th, 1976; accepted for publication, September 3rd, 1976)

2,3-Dideoxyhex-2-enono-1,5-lactones (1) represent a class of simple sugar compounds that are of potential interest in preparative carbohydrate chemistry. Until now, only four representatives (2-5) of this class have been described¹.

Compounds of type 1 can be easily obtained from alkyl 2,3-dideoxyhex-2-enopyranosides by oxidation with 30% hydrogen peroxide in the presence of molybdenum trioxide as a catalyst, followed by dehydration of the resulting hydroperoxide with, for example, acetic anhydride and pyridine. Thus, ethyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2-enopyranoside (6) gave the corresponding 1,5-lactone (3) in 41% yield, and ethyl 4,6-di-O-acetyl-2,3-dideoxy- $\alpha\beta$ -D-threo-hex-2-enopyranoside (7) afforded the 1,5-lactone 13 in 39% yield. A series (8-11) of 6-substituted 2-alkoxy-5,6-dihydro-2H-pyrans gave the corresponding lactones (14-17) in 60-70% yield.

One intermediate hydroperoxide was isolated (12 from 8). The oxidation of glycosides described herein is analogous to the oxidation⁵ of dialkyl acetals of simple aldehydes with anhydrous hydrogen peroxide at 70–80° to give hydroperoxides of the type RO-CHR'-OOH. No oxidation occurred at the anomeric centre when methyl 3,6-di-O-acetyl-2,4-dideoxy- α -DL-threo- and -erythro-hexopyranosides were used as substrates.

^{*}To whom correspondence should be addressed.

NOTE 181

$$R^{3}$$
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{4

6 and 3: $R^1 = Et$, $R^2 = CH_2OAc$, $R^3 = H$, $R^4 = OAc$ 7 and 13: $R^1 = Et$, $R^2 = CH_2OAc$, $R^3 = OAc$, $R^4 = H$ 8, 12, and 14: $R^1 = Me$, $R^2 = CO_2Bu$, $R^3 = R^4 = H$ 9 and 15: $R^1 = Me$, $R^2 = CH_2OAc$, $R^3 = R^4 = H$ 10 and 16: $R^1 = Me$, $R^2 = CH_2NHAc$, $R^3 = R^4 = H$ 11 and 17: $R^1 = Me$, $R^2 = CH_2N(CO)_2C_6H_4$, $R^3 = R^4 = H$

EXPERIMENTAL

Melting points are not corrected. Boiling points refer to bath temperatures. $^1\text{H-N.m.r.}$ spectra were recorded for solutions in CDCl₃ (internal Me₄Si) with JEOL JNM-4H-100 (100 MHz) and Varian HA-60/IL (60 MHz) spectrometers. I.r. spectra were recorded on a Unicam SP-200 spectrophotometer. Optical rotations were measured at $18 \pm 2^\circ$ (c 1, chloroform) with a Perkin-Elmer 141 automatic polarimeter. T.l.c. was performed with Silica Gel G Merck, and column chromatography with Silica Gel 60 Merck (70-230 mesh).

Butyl 5,6-dihydro-2-hydroperoxy-2H-pyran-6-carboxylate (12). — A mixture of butyl 5,6-dihydro-2-methoxy-2*H*-pyran-6-carboxylate⁶ (8) (532 mg, 2.4 mmol), molybdenum trioxide (20 mg), and 30% hydrogen peroxide (20 ml) was stirred at room temperature for 16 h. The reaction was then complete (t.l.c.; hexane-ether, 7:3). The product was extracted with chloroform, the extract was dried (MgSO₄) and concentrated, and the crude, oily product (425 mg, 79%) was eluted from silica gel with hexane-ether (9:1) to give 12; $v_{\text{max}}^{\text{film}}$ 3400 (OOH), 1730 (C=O), and 1660 cm⁻¹ (C=C). ¹H-N.m.r. data: δ 6.15 (m, 1 H, H-4), 5.74 (m, 1 H, H-3), 5.61 (s, 1 H, H-2), 4.59 (t, 1 H, Σ J 15.5 Hz, H-6), 4.21 (t, 2 H, Σ J 13.0 Hz, OCH₂), 2.48-2.19 (m, 2 H, CH₂), 2.0-0.7 (m, 7 H, C₃H₇).

Anal. Calc. for C₁₀H₁₆O₅: C, 55.6; H, 7.4. Found: C, 55.7; H, 7.6.

Butyl 5,6-dihydro-2-pyrone-6-carboxylate (14). — A mixture of crude 12 (425 mg) and acetic anhydride-pyridine (1:4, 10 ml) was kept overnight at room temperature, and then concentrated under diminished pressure. Elution of the oily residue from silica gel with hexane-ether (9:1) gave 14 (260 mg, 65%) as a colourless oil, b.p. $105^{\circ}/0.3$ mmHg; $v_{\text{max}}^{\text{film}}$ 1750 (C=O), 1630 cm⁻¹ (C=C); $\lambda_{\text{max}}^{\text{EtOH}}$ 205 nm. ¹H-N.m.r. data: δ 6.75 (dt, 1 H, $J_{3,4}$ 9.7, $J_{4,5}+J_{4,5}$ 8.8 Hz, H-4), 5.96 (dt, 1 H, $J_{3,5}+J_{3,5}$ 3.8 Hz, H-3), 4.97 (t, 1 H, Σ J 11.4 Hz, H-6), 4.15 (t, 2 H, OCH₂), 2.78 (m, 2 H, CH₂), 2.0-0.7 (m, 7 H, C₃H₇).

Anal. Calc. for C₁₀H₁₄O₄: C, 60.6; H, 7.1. Found: C, 60.7; H, 7.1.

According to the above procedure, the following compounds were prepared:

4,6-Di-O-acetyl-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (3, from 6^7 , 41%), b.p. $160^\circ/0.3$ mmHg, [α]₅₇₈ +129°; $\nu_{\text{max}}^{\text{film}}$ 1745 (C=O), 1640 (C=C), and

1225 cm⁻¹ (C–O–C); lit.³ 1740 cm⁻¹. ¹H-N.m.r. data: δ 6.67 (dd, 1 H, $J_{2,3}$ 9.7, $J_{3,4}$ 3.0 Hz, H-3), 6.00 (dd, 1 H, $J_{2,4}$ 1.5 Hz, H-2), 5.43 (dq, 1 H, $J_{4,5}$ 7.4 Hz, H-4), 4.57 (m, 1 H, $J_{5,6} \approx J_{5,6'} \approx$ 4 Hz, H-5), 4.23 (m, 2 H, H-6,6'), 2.11 and 2.06 (2 s, 6 H, 2 OAc).

Anal. Calc. for C₁₀H₁₂O₆: C, 52.6; H, 5.3. Found: C, 52.7; H, 5.4.

4,6-Di-*O*-acetyl-2,3-dideoxy-D-threo-hex-2-enono-1,5-lactone (13, from 7⁷, 39%), b.p. $160^{\circ}/0.3$ mmHg, $[\alpha]_{578}$ -350° ; $v_{\text{max}}^{\text{film}}$ 1740 (C=O), 1640 (C=C), and 1230 cm⁻¹ (C-O-C). ¹H-N.m.r. data: δ 6.87 (dd, 1 H, $J_{2,3}$ 9.5, $J_{3,4}$ 5.7 Hz, H-3), 6.10 (d, 1 H, H-2), 5.20 (dd, 1 H, $J_{4,5}$ 2.6 Hz, H-4), 4.67 (dq, 1 H, $J_{5,6} \sim 7.0$, $J_{5,6'} \sim 5.4$ Hz, H-5), 4.27 (d, 2 H, H-6,6'), 2.04 (2 s, 6 H, 2 OAc).

Anal. Calc. for C₁₀H₁₂O₆: C, 52.6; H, 5.3. Found: C, 52.7; H, 5.4.

6-Acetoxymethyl-5,6-dihydro-2-pyrone (15, from 9⁸, 59%), b.p. 140°/0.5 mmHg; $v_{\text{max}}^{\text{film}}$ 1740 (C=O) and 1630 cm⁻¹ (C=C). ¹H-N.m.r. data: δ 6.91 (dt, 1 H, $J_{3.4}$ 10.0, $J_{4.5} + J_{4.5}$, 8.6 Hz, H-4), 6.00 (dt, 1 H, $J_{3.5} + J_{3.5}$, 3.8 Hz, H-3), 4.64 (m, 1 H, ΣJ 25.0 Hz, H-6), 4.25 (d, 2 H, CH₂O), 2.44 (m, 2 H, H-5,5′), 2.10 (s, 3 H, OAc).

Anal. Calc. for C₈H₁₀O₄: C, 56.5; H, 5.9. Found: C, 56.3; H, 5.9.

6-Acetamidomethyl-5,6-dihydro-2-pyrone (16, from 10°, 65%), b.p. 153°/0.2 mmHg, m.p. 79°; $v_{\text{max}}^{\text{KBr}}$ 1720 (C=O), 1650, and 1570 cm⁻¹ (amide). ¹H-N.m.r. data: δ 6.90 (dt, 1 H, $J_{3,4}$ 10.0, $J_{4,5} + J_{4,5}$, 8.5 Hz, H-4), 5.98 (dt, 1 H, $J_{3,5} + J_{3,5}$, 3.6 Hz, H-3), 4.52 (m, 1 H, ΣJ 26.5 Hz, H-6), 3.60 and 3.50 (2 m, 2 H, CH₂-N), 2.37 (m, 2 H, ΣJ 14.0 Hz, CH₂), 2.02 (s, 3 H, NAc).

Anal. Calc. for $C_8H_{11}NO_3$: C, 56.8; H, 6.6; N, 8.3. Found: C, 56.8; H, 6.5; N, 8.2.

5,6-Dihydro-6-phthalimidomethyl-2-pyrone (17, from 11¹⁰, 70%), m.p. 164°; $v_{\text{max}}^{\text{KBr}}$ 1770, 1720, 1620 (phthalimide), and 1735 cm⁻¹ (lactone). ¹H-N.m.r. data: δ 8.0-7.6 '(m, 4 H, aromatic), 6.85 (dt, 1 H, $J_{3,4}$ 10.0, $J_{4,5}+J_{4,5}$, 8.7 Hz, H-4), 6.00 (dt, 1 H, $J_{3,5}+J_{3,5}$, 3.8 Hz, H-3), 4.79 (m, 1 H, ΣJ 27.5 Hz, H-6), 4.10 (dd, 1 H, J_{gem} -14.1, J 7.5 Hz), 3.84 (dd, 1 H, J 5.6 Hz, N-CH₂), 2.47 (m, 2 H, ΣJ 14.5 Hz, H-5,5').

Anal. Calc. for C₁₄H₁₁NO₄: C, 65.4; H, 4.3; N, 5.4. Found, C, 65.5; H, 4.2; N, 5.3.

REFERENCES

- M. BERGMANN, L. ZERVAS, AND E. SILBERKWEIT, Ber., 64 (1931) 2428-2436; H. KUZUHARA AND L. EMOTO, Agr. Biol. Chem., 26 (1962) 334-340; G. DEAK, K. GALL-ISTOK, AND P. SOHAR, Acta Chim. (Budapest), 75 (1973) 189-191; H. KUZUHARA AND H. G. FLETCHER, JR., J. Org. Chem., 33 (1968) 1816-1819.
- 2 H. H. BAER AND W. RANK, Can. J. Chem., 47 (1969) 2811-2818.
- 3 M. GOUEDARD, F. GAUDEMER, AND A. GAUDEMER, Bull. Soc. Chim. Fr., (1973) 577-580.
- 4 O. K. GANGULY, O. Z. SARRE, AND H. REIMANN, J. Am. Chem. Soc., 90 (1968) 7129-7130.
- 5 A. RIECHE AND C. BISCHOFF, Chem. Ber., 94 (1961) 2722-2726.
- 6 A. KONOWAT, J. JURCZAK, AND A. ZAMOJSKI, Rocz. Chem., 42 (1968) 2045-2059.
- 7 R. J. FERRIER AND N. PRASAD, J. Chem. Soc., C, (1969) 570-575.
- 8 J. Jurczak, A. Konowat, and A. Zamojski, Rocz. Chem., 44 (1970) 1587-1590.
- 9 W. PRIEBE AND A. ZAMOJSKI, unpublished results.
- 10 W. A. SZAREK, C. DEPEW, A. ZAMOJSKI, AND J. JURCZAK, unpublished results.